skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Groechenig, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We generalize Contou-Carrère symbols to higher dimensions. To an ( n + 1 ) (n+1) -tuple f 0 , … , f n ∈ A ( ( t 1 ) ) ⋯ ( ( t n ) ) × f_0,\dots ,f_n \in A((t_1))\cdots ((t_n))^{\times } , where A A denotes an algebra over a field k k , we associate an element ( f 0 , … , f n ) ∈ A × (f_0,\dots ,f_n) \in A^{\times } , extending the higher tame symbol for k = A k = A , and earlier constructions for n = 1 n = 1 by Contou-Carrère, and n = 2 n = 2 by Osipov–Zhu. It is based on the concept of higher commutators for central extensions by spectra. Using these tools, we describe the higher Contou-Carrère symbol as a composition of boundary maps in algebraic K K -theory, and prove a version of Parshin–Kato reciprocity for higher Contou-Carrère symbols. 
    more » « less